
Directing Tangible Controllers with Computer Vision and
Beholder

Peter Gyory
peter.gyory@colorado.edu

ATLAS Institute
University of Colorado Boulder

Boulder, USA

Krithik Ranjan
krithik.ranjan@colorado.edu

ATLAS Institute
University of Colorado Boulder

Boulder, USA

Zhen Zhou Yong
e0325771@u.nus.edu

Division of Industrial Design
National University of Singapore

Singapore

Clement Zheng
clement.zheng@nus.edu.sg

Division of Industrial Design &
Keio-NUS CUTE Center

National University of Singapore
Singapore

Ellen Yi-Luen Do
ellen.do@colorado.edu

ATLAS Institute
University of Colorado Boulder

Boulder, USA

ABSTRACT
We present Beholder, a computer vision (CV) toolkit for building
tangible controllers for interactive computer systems. Beholder fa-
cilitates designers to build physical inputs that are instrumented
with CV markers. By observing the properties of these markers, a
CV system can detect physical interactions that occur. Beholder
provides a software editor that enables designers to map CVmarker
behavior to keyboard events; thus connecting the CV-driven tangi-
ble controllers to any software that responds to keyboard input. We
propose three design scenarios for Beholder—controllers to support
everyday work, alternative controllers for games, and transforming
physical therapy equipment into controllers to monitor patient
progress.

CCS CONCEPTS
• Human-centered computing → Systems and tools for inter-
action design.

KEYWORDS
Computer Vision, Fiducial Markers, Tangible Interface
ACM Reference Format:
Peter Gyory, Krithik Ranjan, Zhen Zhou Yong, Clement Zheng, and Ellen
Yi-Luen Do. 2022. Directing Tangible Controllers with Computer Vision and
Beholder. In SIGGRAPH Asia 2022 Emerging Technologies (SA ’22 Emerging
Technologies), December 6–9, 2022, Daegu, Republic of Korea. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3550471.3564764

1 INTRODUCTION
We present Beholder—a computer vision (CV) toolkit for building
tangible controllers for interactive computer systems. This toolkit
extends our previous work that demonstrates ArUco markers (CV

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SA ’22 Emerging Technologies, December 6–9, 2022, Daegu, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9472-7/22/12.
https://doi.org/10.1145/3550471.3564764

markers) [Garrido-Jurado et al. 2014] as a material for tangible
interaction design [Zheng et al. 2020]. Essentially, CV markers are
simple printable graphics that translate physical movements to
computational information (e.g. presence, position, rotation) when
detected. They can be leveraged to report on a specific tangible
interaction when placed strategically within a physical mechanism.
In Figure 1 for example, pressing a button completes an ArUco
marker for detection, while releasing a button conceals the marker—
interacting with this button can thus be detected by the presence
of the CV marker. Beholder enables designers to map CV marker
behavior to keyboard input on the computer (e.g. ‘w’ keypress),
thereby enabling tangible controllers instrumented with CVmarker
to interact with any software that takes keyboard events as an input.

Figure 1: Detecting a button press with CV markers.

CV-driven tangible interfaces have inputs that are untethered,
and typically require only a single camera to function (e.g. [Jordà
et al. 2007; Savage et al. 2013]). They are simpler assemblies to
construct in comparison to tangible interfaces instrumented with
electronic sensors and circuits. However, current CV platforms for
building tangible interfaces require designers to integrate CV and
interaction logic by programming through software libraries (e.g.
[Kaltenbrunner and Bencina 2007]). Beholder takes inspiration from
physical computing toolkits like the Micro:bit1 and Makey Makey2.
These platforms offer “low floors” [Resnick and Rosenbaum 2013]
that encourage interaction designers, particularly people unfamiliar
with electronics, to try building functional tangible interfaces with
physical computing. Notably, the visual editor that they provide and
1https://microbit.org/
2https://makeymakey.com/

https://doi.org/10.1145/3550471.3564764
https://doi.org/10.1145/3550471.3564764


SA ’22 Emerging Technologies, December 6–9, 2022, Daegu, Republic of Korea Gyory, et al.

A— B— C—
Figure 2: Example applications for Beholder.

the direct mapping to human-interface device (HID) conventions
facilitate interaction design for programming novices. Beholder
aims to serve a similar role for CV—enabling designers to easily
adopt CV markers as a material for building tangible user interfaces.

2 BEHOLDER: SYSTEM ARCHITECTURE
The Beholder toolkit operates on a system that consists of three
main components (Figure 3A):

(1) Actors are the physical controllers that designers build. These
controllers are instrumented with CV markers that report
on different interaction events that occur (e.g. Figure 1).

(2) Spectators are camera devices (e.g. USB web cameras, smart-
phones) that observe the actors. These devices transmit the
camera feed to a main computer for CV processing.

(3) The director is the main computer unit that receives and
processes the camera feeds. The Beholder toolkit runs on
this computer.

2.1 Editor
Beholder’s editor runs as a standalone desktop application. It pro-
vides a visual node-based scripting environment (Figure 3B) for
designers to create logical relationships between CV marker be-
havior and HID events (e.g. keyboard events like keyup, keydown,
keypressed). The editor also provides a real-time debugging by
labelling CV marker nodes with their properties (i.e. presence, po-
sition, rotation).

A—
�����

���������

��������

�����������

�������������

B—

Figure 3: Beholder: System architecture and editor UI.

3 EXAMPLE APPLICATIONS
As we were developing Beholder, we also deployed it with inter-
action design students at the National University of Singapore to
understand how designers will use it, as well as what they will
build with it. From these facilitations, we identified three scenarios
where designers might apply Beholder :

(1) Everyday Productivity: The COVID-19 pandemic has pushed
people to work from home, and in turn spurred people to im-
prove their home offices to facilitate this situation. Beholder
facilitates designers to construct do-it-yourself productiv-
ity interfaces that support work (Figure 2A). For example,

interfaces with hotkeys that trigger common actions (e.g.
copy/paste), or more natural tangible interactions for digital
workflows (e.g. a wheel to scrub through the timeline during
video editing).

(2) Alternative Game Controllers: Video games are usually played
on standard HID devices such such the keyboard, mouse, or
game pad. Beholder enables designers to easily create alterna-
tive controllers for video games using simple materials like
cardboard and paper [Gyory et al. 2022], which can facilitate
a richer tangible playing experience (Figure 2B).

(3) Augmenting Physical Therapy: Beholder can be used to in-
strument existing physical therapy equipment into tangible
controllers. Such controllers can be connected to a moni-
toring system to help therapists keep track of their client’s
progress; or, they can be directed to control video games,
gamifying the (otherwise mundane) physical therapy expe-
rience.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No IIS2040489 and National University of
Singapore Startup Fund A-0008470-01-00. We also want to thank
our students for testing Beholder and providing us with invaluable
feedback.

REFERENCES
S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez.

2014. Automatic generation and detection of highly reliable fiducial markers under
occlusion. Pattern Recognition 47, 6 (2014), 2280–2292. https://doi.org/10.1016/j.
patcog.2014.01.005

Peter Gyory, Perry Owens, Matthew Bethancourt, Amy Banic, Clement Zheng, and
Ellen Yi-Luen Do. 2022. Build Your Own Arcade Machine with Tinycade. In Cre-
ativity and Cognition. ACM, Venice Italy, 312–322. https://doi.org/10.1145/3527927.
3533023

Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin Kaltenbrunner. 2007. The
reacTable: exploring the synergy between live music performance and tabletop
tangible interfaces. In Proceedings of the 1st international conference on Tangible and
embedded interaction (2007-02-15) (TEI ’07). Association for Computing Machinery,
New York, NY, USA, 139–146. https://doi.org/10.1145/1226969.1226998

Martin Kaltenbrunner and Ross Bencina. 2007. reacTIVision: a computer-vision frame-
work for table-based tangible interaction. In Proceedings of the 1st international
conference on Tangible and embedded interaction (2007-02-15) (TEI ’07). Association
for Computing Machinery, New York, NY, USA, 69–74. https://doi.org/10.1145/
1226969.1226983

Mitchel Resnick and Eric Rosenbaum. 2013. Designing for Tinkerability. In Design,
Make, Play. Routledge, Abingdon, Oxfordshire, UK.

Valkyrie Savage, Colin Chang, and Björn Hartmann. 2013. Sauron: embedded single-
camera sensing of printed physical user interfaces. In Proceedings of the 26th annual
ACM symposium on User interface software and technology (2013-10-08) (UIST ’13).
Association for Computing Machinery, New York, NY, USA, 447–456. https:
//doi.org/10.1145/2501988.2501992

Clement Zheng, Peter Gyory, and Ellen Yi-Luen Do. 2020. Tangible Interfaces with
Printed Paper Markers. In Proceedings of the 2020 ACM Designing Interactive Systems
Conference (2020-07-03) (DIS ’20). Association for Computing Machinery, New York,
NY, USA, 909–923. https://doi.org/10.1145/3357236.3395578

https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1145/3527927.3533023
https://doi.org/10.1145/3527927.3533023
https://doi.org/10.1145/1226969.1226998
https://doi.org/10.1145/1226969.1226983
https://doi.org/10.1145/1226969.1226983
https://doi.org/10.1145/2501988.2501992
https://doi.org/10.1145/2501988.2501992
https://doi.org/10.1145/3357236.3395578

	Abstract
	1 Introduction
	2 Beholder: System Architecture
	2.1 Editor

	3 Example Applications
	Acknowledgments
	References

