
Cartoonimator: A Low-cost, Paper-based Animation Kit for
Computational Thinking

Krithik Ranjan
krithik.ranjan@colorado.edu

ATLAS Institute, University of Colorado Boulder
Boulder, Colorado, USA

Peter Gyory
peter.gyory@colorado.edu

ATLAS Institute, University of Colorado Boulder
Boulder, Colorado, USA

Michael L Rivera
mrivera@colorado.edu

ATLAS Institute, University of Colorado Boulder
Boulder, Colorado, USA

Ellen Yi-Luen Do
ellen.do@colorado.edu

ATLAS Institute, University of Colorado Boulder
Boulder, Colorado, USA

Figure 1: Creating an animation with Cartoonimator: (A) Drawing the scene background and characters; (B) Capturing the
scene and keyframes, shown in the app in (C); (D) Playing the video.

ABSTRACT
Computational thinking has been identified as an important skill
for children to learn in the 21st century, and many innovative kits
and tools have been developed to integrate it into children’s learn-
ing. Yet, most solutions require the use of devices like computers or
other expensive hardware, thus being inaccessible to low-income
schools and communities. We present Cartoonimator, a low-cost,
paper-based computational kit for children to create animations
and engage with computational thinking. Cartoonimator requires
only paper and a smartphone to use, offering an affordable learning
experience. Children can draw the scenes and characters for their
animation on the paper, which is printed with computer vision
markers. We developed the mobile web app to provide an interface
to capture keyframes and compile them into animations. In this

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IDC ’23, June 19–23, 2023, Chicago, IL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0131-3/23/06.
https://doi.org/10.1145/3585088.3593886

paper, we describe the implementation and workflow of Cartooni-
mator, its deployment with children at a local STEAM event, and a
planned evaluation for the kit.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing systems and tools; • Social and professional topics
→ Computational thinking; K-12 education.

KEYWORDS
tangible programming, paper computing, computational thinking,
animation

ACM Reference Format:
Krithik Ranjan, Peter Gyory, Michael L Rivera, and Ellen Yi-Luen Do. 2023.
Cartoonimator: A Low-cost, Paper-based Animation Kit for Computational
Thinking. In Interaction Design and Children (IDC ’23), June 19–23, 2023,
Chicago, IL, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3585088.3593886

https://doi.org/10.1145/3585088.3593886
https://doi.org/10.1145/3585088.3593886
https://doi.org/10.1145/3585088.3593886


IDC ’23, June 19–23, 2023, Chicago, IL, USA Krithik Ranjan, Peter Gyory, Michael L Rivera, and Ellen Yi-Luen Do

1 INTRODUCTION
Computational Thinking [25] is viewed as a fundamental skill that
children should learn. Computational concepts like algorithmic
thinking, deconstruction, abstraction, and debugging, not only help
children work well with computers but also "understand the world
in new ways" [27]. Studies show that children as young as kinder-
garteners can grasp these computational concepts [22] and exposure
to them can improve their self-efficacy towards STEM fields in the
future [6]. To help children begin thinking computationally from an
early age, programming has become an important subject in K-12
education [26]. A variety of approaches to programming education
range from graphical coding environments to computational toys
and activity kits [27].

Graphical programming languages (e.g. Scratch [19]) offer a low
barrier to entry for children through a drag-and-drop programming
interface by removing the need to understand complex code syn-
tax. However, these programming environments are designed for
a single-user workflow, and are therefore less effective and engag-
ing in settings where not every student has their own computer
[12, 21]. Tangible programming approaches attempt to overcome
this through shared interaction with physical objects that repre-
sent programming concepts [10]. Unfortunately, these tools often
involve embedded electronics, additional computers, and high-end
image processing techniques, which make them expensive and
unreliable for a classroom environment [9].

The cost and resources needed for both graphical and tangi-
ble programming tools make them inaccessible to economically-
disadvantaged schools and communities. As an approach towards
solving this problem, paper programming has emerged as a subset
of tangible programming which relies on everyday materials like
paper or cardboard, and mobile-based computer vision algorithms
to offer an affordable and effective learning experience. Groups
of students in classrooms can work on these paper programming
activities with a shared smartphone, which further increases the
accessibility [21].

In this work, we present Cartoonimator — a low-cost computa-
tional kit that enables children to create animations using paper. Our
kit builds on the paper programming paradigm of using computer
vision on smartphones to use paper as a medium for computing.
Cartoonimator enables children to explore computer animations
while engaging in computational thinking concepts (e.g. sequences
and parallelism),practices (e.g. being incremental and iterative, test-
ing and debugging) and perspectives (e.g. expressing), as defined in
the computational thinking framework by Brennan and Resnick [4].
The Cartoonimator kit consists of (1) paper enhanced with com-
puter vision (CV) markers on which children can draw and paint
parts of their animation, and (2) a simple smartphone app that they
can use to capture frames and view their animation. Cartoonimator
features a technique called keyframing in which animators spec-
ify starting and ending points (keyframes) of a smooth transition
and the software interpolates between them to create a complete
animation. The following sections describe the related work, the
implementation and workflow of the system, its deployment with
children at a local STEAM festival, and a planned extensive evalua-
tion of Cartoonimator.

2 BACKGROUND
Over the decades, various approaches have been used to promote
computational thinking among children, one of the earliest being
the LOGO programming language that enables learners to create
graphics by giving commands to move a turtle on their screen
[17]. In recent years, Scratch [19] and ScratchJr [7] have been two
of the popular block-based graphical programming languages for
children to create games and interactive animations on the web or
using apps. Although Graphical programming interfaces provide
a low technical barrier for learners, they are limited to individ-
ual on-screen interaction. In contrast, tangible programming tools
enable multiple students to collaborate using a physical computa-
tional interface (e.g. Tern [12]). These can be electronic robotic toys
like Cubetto [24] that children can program using tangible blocks,
or non-electronic passive learning tools like board games (Robot
Turtles [23]) or storybooks (Hello Ruby [14]).

To make these tangible programming tools more accessible, re-
searchers have turned to everyday materials like paper as the in-
terface and mobile devices as the computational component. For
example, the Kart-ON project [21] offers a paper-based program-
ming environment for creative coding applications using scannable
programming cards for the p5.js framework [15]. Roberto [11] takes
a storybook approach in which readers can create their own ani-
mated stories by adhering code stickers to the book and scanning
them. With Draw2Code [13], children can create gesture-controlled
AR animations for a single drawing by arranging and scanning
paper coding blocks.

Cartoonimator differs from these paper programming tools by
shifting focus away from traditional block-based programming —
instead of describing the animation with coding blocks, in Cartoon-
imator the child positions their character drawing directly on top of
their animation background to capture keyframes and build the an-
imation. This engages their spatial knowledge domain in children’s
learning, which has been found to rarely be leveraged in the design
of programming tools [22]. Moreover, Cartoonimator enables chil-
dren to draw their own scenes and characters, and create longer and
more complex animations than other paper-based animation kits
(e.g., Roberto [11] and Draw2Code [13]). Cartoonimator also sup-
ports creating multiple independently animated characters, which
engages children with the computational concept of parallelism.

3 CARTOONIMATOR OVERVIEW
Cartoonimator is a computational kit for children to create ani-
mations from their drawings. We chose drawing as a medium for
computing in Cartoonimator, an activity that children already en-
gage in and derive meaning from [5]. Moreover, creating animations
with Cartoonimator encourages a child to see computation as a
means of self-expression to tell stories, which can stimulate creative
play and communication [18], and computational thinking [4].

We developed Cartoonimator as a paper-based kit that uses
shared smartphones instead of individual computers. Further, we
limited the smartphone interaction so that it is easier to share
phones it in a classroom or for a child to borrow one from their par-
ents. In line with Resnick’s design principles for creative thinking
[20], we designed the kit to be easy to interact with, while providing
support to create complex animations.



Cartoonimator IDC ’23, June 19–23, 2023, Chicago, IL, USA

Cartoonimator is centered on translating the keyframing work-
flow of traditional 2D computer animation software (e.g. Macrome-
dia Flash [2] and Adobe Animate [1]) in which animators create
digital characters or sprites and position them on top of the ani-
mation background (scene) to specify different keyframes and their
time occurrence in the animation (timestamp). Similar to these
tools, Cartoonimator enables children to create complete anima-
tions using keyframing, while learning about animation concepts
such as sprite, scene, keyframe, and timestamp. As a child creates
animations with Cartoonimator, we expect them to engage with
the computational concepts of sequences and parallelism, which
are core to the keyframing animation process. While creating ani-
mations with the kit, children apply computational practices and
acquire the expressive computational perspective as defined by
Brennan and Resnick in their framework. [4].

3.1 System Elements

Figure 2: Placing multiple object cards on the scene over two
keyframes.

The Cartoonimator system is made up of (1) paper with printed
CV markers, and (2) a smartphone app. The paper component
of the kit can be further divided into (1a) scene sheets on which
children can draw the background for their animation (Fig. 1A),
and (1b) object card templates to draw sprites (Fig. 1A). We use
the ArUco computer vision (CV) markers [8] to recognize and
process the drawings. Each scene sheet has a blank drawing region
surrounded by four ArUco markers (one at each corner) which
enable a child to capture the scene from any angle – the app uses
the markers to flatten and crop to the drawing using a CV technique
called homography (1C). The object cards are small square paper
sheets that have one ArUco marker at the top-left corner and a
colored border. Using CV algorithms, Cartoonimator subtracts the
background and the marker from these object cards to place them
on top of the scene. A child can addmultiple sprites to the animation
using different object cards, or use the same object card to draw
different forms of the same sprite (Fig. 2).

The Cartoonimator application is a mobile website that enables
the children to capture the scenes and the keyframes, assign times-
tamps, and view the complete animation (1C,D). When designing
Cartoonimator, we sought to make the application’s interface sim-
ple to promote use by children and support sharing in a classroom.
The application can be opened on most mobile browsers (tested
on Chrome, Edge, and Safari), and does not require any additional
installation. The app utilizes OpenCV [3] and ArUco [8, 16] libraries
in JavaScript to perform the ArUco marker recognition and con-
struction and rendering of the video.

3.2 Workflow
Fig. 1 describes the workflow of using Cartoonimator. To create an
animation with Cartoonimator, the child first draws a background
for their scene on one of the set drawing sheets and one or more
character sprites on the object cards (Fig. 1A). Once all the drawings
are ready, they can begin capturing the scenes with the app (Fig.
1B). First, the child adds a scene to their animation. Each scene
is made up of a background and keyframes on that background.
The keyframes are used to specify the position and orientation of
characters at different times during the scene and therefore have
an associated timestamp. For each keyframe, they place the object
cards on top of the scene sheet to specify their position, orientation,
and timestamp, which will change over different keyframes. After
capturing a few keyframes, they can play their created animation
and download it to the device. To make a more complex animation,
they can add more scenes and keyframes.

4 CARTOONIMATOR IN THE WILD AT STEAM
FEST

We deployed Cartoonimator with children at a local STEAM Fest
where 20+ children aged between 4 and 13 tried out the kit and no
data was formally collected. Children were given a brief overview
of how to use Cartoonimator and then set free to explore. Atten-
dees only spent a few minutes at each booth, so in addition to the
blank scene sheets and object cards, we had pre-printed scenes and
characters for children to work with. Many children were excited to
make an animation with these printed cartoon characters familiar



IDC ’23, June 19–23, 2023, Chicago, IL, USA Krithik Ranjan, Peter Gyory, Michael L Rivera, and Ellen Yi-Luen Do

Figure 3: Cartoonimator at STEAM Fest: (A) A child setting up animation with multiple objects, (B) Viewing the created
animation, (C) A sprite spanning two object cards, (D) One child helping their sibling use Cartoonimator.

to them, while some drew their own scenes and characters, and a
few modified the pre-printed characters.

Most of the children were able to independently create full an-
imations (at least 5 keyframes long), but some needed guidance
with using the app and performing all the steps in order to create
the animation. Some children were with their siblings or friends,
and after we taught one, they were easily able to teach the other
and make an animation together (Fig. 3D). One collaboration strat-
egy we saw was to divide their roles between ‘picture-taker’ and
‘character-mover’. This made it easier for them to interact with
the phone app as both children were not touching the screen at
the same time. Some children also came back to play with Car-
toonimator (one even returned three times) — they remembered
how to use the kit and returned with ideas for more complicated
animations. For example, one wanted to create a bigger character

than the object cards permitted, so they inventively put two cards
together to draw and move the character (Fig. 3D).

We observed children indirectly learning computational concepts
of sequences and parallelism (when they used multiple characters
like in Fig.3). Further, they created their animation incrementally
and often went back to recapture the keyframe or reset the times-
tamp to adjust the animation, thus engaging in the computational
practices of being incremental and iterative, and testing and debug-
ging.

The main obstacle to working with Cartoonimator we found
from this deployment was the concept of timestamps. It was hard
for the children to see how the timestamp number for each keyframe
determines the keyframe’s position in time in the animation. Some
of them understood the numbers as a way to make the animation
go faster or slower and changed the timestamps to adjust the speed



Cartoonimator IDC ’23, June 19–23, 2023, Chicago, IL, USA

of the characters moving on the scene. Others, however, needed
guidance on what numbers they could fill in for the timestamps to
obtain their intended animation. For future updates to the system,
we will devise more intuitive ways to introduce keyframe times to
children, such as an interactive timeline.

5 CONCLUSION AND FUTUREWORK
In this paper, we present our preliminary work on Cartoonimator,
a paper-based animation kit for computational thinking. By devel-
oping this kit to need only some printed paper and a smartphone,
we aim to stay within the economic constraints faced by many. Cre-
ating with Cartoonimator exposes young animators to computer
animation concepts, as well as computational thinking concepts
and practices.

Our experiencewith kids trying out Cartoonimator at the STEAM
Fest has revealed promise in terms of engagement and usability.
Moving forward, we plan to conduct a formal evaluation of the kit
aimed toward answering the following research questions — (1)
Does Cartoonimator teach children about the target animation con-
cepts of sets, scenes, sprites, and keyframes? (2) Do children develop
computational thinking concepts of sequences and parallelism, and
computational practices of being incremental and iterative, testing
and debugging, and reusing and remixing when interacting with Car-
toonimator? We will use the framework put forward by Brennan
and Resnick [4] and specifically the techniques of project analy-
sis and artifact-based interviews to evaluate the kit along these
questions. We are excited to see how Cartoonimator improves kids’
computational learning in an affordable and engaging way, and we
hope this kit can be a step toward making computing education
more accessible to kids in low-income schools and communities.

ACKNOWLEDGMENTS
This research is sponsored in part by the U.S. National Science
Foundation through grant IIS-2040489.

REFERENCES
[1] Adobe.com. n.d.. Adobe Animate. Retrieved December 15, 2022 from https:

//www.adobe.com/products/animate.html
[2] Adobe.com. n.d.. Macromedia - Flash. Retrieved December 15, 2022 from

https://www.adobe.com/support/documentation/en/flash/fl8/releasenotes.html
[3] Gary Bradski. 2000. The openCV library. Dr. Dobb’s Journal: Software Tools for

the Professional Programmer 25, 11 (2000), 120–123.
[4] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and as-

sessing the development of computational thinking. In Proceedings of the 2012 an-
nual meeting of the American educational research association, Vancouver, Canada,
Vol. 1. 25.

[5] Margaret L Brooks. 2017. Drawing to learn. Springer.
[6] Yu-Hui Ching, Yu-Chang Hsu, and Sally Baldwin. 2018. Developing computa-

tional thinking with educational technologies for young learners. TechTrends 62,
6 (2018), 563–573.

[7] Louise P Flannery, Brian Silverman, Elizabeth R Kazakoff, Marina Umaschi Bers,
Paula Bontá, and Mitchel Resnick. 2013. Designing ScratchJr: Support for early
childhood learning through computer programming. In Proceedings of the 12th
international conference on interaction design and children. 1–10.

[8] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-Cuevas,
and Manuel Jesús Marín-Jiménez. 2014. Automatic generation and detection of
highly reliable fiducial markers under occlusion. Pattern Recognition 47, 6 (2014),
2280–2292.

[9] Sidhant Goyal, Rohan S Vijay, Charu Monga, and Pratul Kalita. 2016. Code bits:
an inexpensive tangible computational thinking toolkit for K-12 curriculum. In
Proceedings of the TEI’16: Tenth International Conference on Tangible, Embedded,
and Embodied Interaction. 441–447.

[10] Michael Horn and Marina Bers. 2019. Tangible computing. The Cambridge
handbook of computing education research 1 (2019), 663–678.

[11] Michael S Horn, Sarah AlSulaiman, and Jaime Koh. 2013. Translating Roberto to
Omar: computational literacy, stickerbooks, and cultural forms. In Proceedings of
the 12th International Conference on Interaction Design and Children. 120–127.

[12] Michael S Horn and Robert JK Jacob. 2007. Designing tangible programming
languages for classroom use. In Proceedings of the 1st international conference on
Tangible and embedded interaction. 159–162.

[13] Hyejin Im and Chris Rogers. 2021. Draw2Code: Low-Cost Tangible Programming
for Creating AR Animations. In Interaction Design and Children. 427–432.

[14] Linda Liukas. n.d.. Hello Ruby. Retrieved December 15, 2022 from https:
//www.helloruby.com/

[15] Lauren Lee McCarthy. n.d.. p5.js. Retrieved December 15, 2022 from https:
//p5js.org/

[16] Juan Mellado. 2011. js-aruco | GitHub. Retrieved March 10, 2023 from https:
//github.com/jcmellado/js-aruco

[17] Seymour A Papert. 2020. Mindstorms: Children, computers, and powerful ideas.
Basic books.

[18] Louise Phillips. 2000. Storytelling: The seeds of children’s creativity. Australasian
journal of early childhood 25, 3 (2000), 1–5.

[19] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60–67.

[20] Mitchel Resnick, BradMyers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch,
Ted Selker, and Mike Eisenberg. 2005. Design principles for tools to support
creative thinking. (2005).

[21] Alpay Sabuncuoglu and T Metin Sezgin. 2022. Kart-ON: An Extensible Paper
Programming Strategy for Affordable Early Programming Education. Proceedings
of the ACM on Human-Computer Interaction 6, EICS (2022), 1–18.

[22] Amanda Strawhacker and Marina Umaschi Bers. 2019. What they learn when
they learn coding: investigating cognitive domains and computer programming
knowledge in young children. Educational Technology Research and Development
67, 3 (2019), 541–575.

[23] Inc. ThinkFun. n.d.. Robot Turtles: A Coding Board Game for Little Programmers.
Retrieved December 15, 2022 from https://www.thinkfun.com/products/robot-
turtles/

[24] Primo Toys. n.d.. Cubetto: A Toy Robot Teaching Kids Code & Computer Pro-
gramming. Retrieved December 15, 2022 from https://www.primotoys.com/

[25] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

[26] Jeannette M Wing. 2016. Computational Thinking, 10 years later. Re-
trieved March 3, 2023 from https://www.microsoft.com/en-us/research/blog/
computational-thinking-10-years-later/

[27] Junnan Yu and Ricarose Roque. 2019. A review of computational toys and kits
for young children. , 17–36 pages.

Received 15 March 2023; accepted 18 April 2023

https://www.adobe.com/products/animate.html
https://www.adobe.com/products/animate.html
https://www.adobe.com/support/documentation/en/flash/fl8/releasenotes.html
https://www.helloruby.com/
https://www.helloruby.com/
https://p5js.org/
https://p5js.org/
https://github.com/jcmellado/js-aruco
https://github.com/jcmellado/js-aruco
https://www.thinkfun.com/products/robot-turtles/
https://www.thinkfun.com/products/robot-turtles/
https://www.primotoys.com/
https://www.microsoft.com/en-us/research/blog/computational-thinking-10-years-later/
https://www.microsoft.com/en-us/research/blog/computational-thinking-10-years-later/

	Abstract
	1 Introduction
	2 Background
	3 Cartoonimator Overview
	3.1 System Elements
	3.2 Workflow

	4 Cartoonimator in the Wild at STEAM Fest
	5 Conclusion and Future Work
	Acknowledgments
	References

